US3519201A - Seal means for blood separator and the like - Google Patents

Seal means for blood separator and the like Download PDF

Info

Publication number
US3519201A
US3519201A US727192A US3519201DA US3519201A US 3519201 A US3519201 A US 3519201A US 727192 A US727192 A US 727192A US 3519201D A US3519201D A US 3519201DA US 3519201 A US3519201 A US 3519201A
Authority
US
United States
Prior art keywords
channel
blood
seal
rotating element
channel means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US727192A
Inventor
Robert J Eisel
William B Greenough
Robert M Kellogg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Original Assignee
US Department of Health and Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Health and Human Services filed Critical US Department of Health and Human Services
Application granted granted Critical
Publication of US3519201A publication Critical patent/US3519201A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/045Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation having annular separation channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/0464Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation with hollow or massive core in centrifuge bowl

Definitions

  • ABSTRACT F THE DISCLOSURE Sealing means for use with a face seal having one fixed element and one rotating element particularly for use with a continuous blood flow separator. Saline under pressure is forced into groove means between the channel means at the interface of the seal means to preclude seepage of the materials in the channel means across the interface. According to a preferred arrangement the most sensitive material, such as packed red blood cells, is removed through the most direct pathway to preclude damage thereto.
  • the rotating element is formed of ceramic and the fixed element is formed of stainless steel.
  • This invention relates to a sealing means for use with a face seal having one fixed element and one rotating element. More specifically, this invention is directed to a modi-tied and improved sealing means for use with a continuous flow blood separator of the type described in detail in copending application Ser. No. 570,792 filed Aug. 8, 1966, in the names of George T. Judson and Emil J. Freireich, and assigned to the same assignee as the instant application. The disclosure of the aforementioned copending application is incorporated herein by reference in its entirety.
  • a sealing means between fixed and rotating elements provides obvious difficulties.
  • Such a sealing means has general applicability, for example, in centrifuge devices or separating means wherein a fluid is separated into a plurality of components by centrifugal force. With such devices the fluid must be fed into the bowl of the centrifuge and the separated components of the fluid must be removed therefrom after centrifugation.
  • a sealing means must be interposed which is effective to prevent leakage between a stationary or xed element into which the fluid is fed and from which the components are withdrawn, and a rotating element which receives the iiuid from the xed element and feeds the same to the bowl of the separator and which receives the fractional components from the separator and feeds the same to the fixed element for withdrawal from the device.
  • a basic and important objective of this invention is the provision of a sealing means which precludes lateral seepage of blood or fractional components thereof across the interface defined between the fixed and rotating elements.
  • the instant inventive concepts provide means intermediate each juxtaposed pair of channels in the face seal which acts as a barrier to such seepage.
  • Yet another important object of the instant invention is the provision of an arrangement for a face seal wherein the most sensitive component, that is, the packed red blood cells, are passed through the most direct path to preclude any damage thereto.
  • Another important object of this invention is the provision of a face seal wherein the rotating element is formed of a material which is not subject to dimensional change or warpage during use.
  • FIG. 1 is a vertical cross-sectional view through a centrifuge means incorporating a face seal according to the instant inventive concepts
  • FIG. 2 is a bottom plan view of the fixed or stationary element of the face seal
  • FIG. 3 is a transverse cross-sectional view taken substantially on lines 3--3 of FIG. 2;
  • FIG. 4 is a top plan view of the rotating element of the face seal.
  • FIG. 5 is a transverse cross-sectional view taken substantially on lines 5-5 of FIG. 4, showing cooperating portions of the centrifuge means in dotted lines.
  • the basic centrifuge means is designated generally by the reference numeral in FIG. l and includes a bowl or shell y12 disposed within a casing (not shown) which is utilized to rotate the bowl and its associated elements about a central axis.
  • the shell 12 has an upstanding cylindrical sidewall means 14 Which terminates in an outwardly and upwardly directed flange 16.
  • the bottom wall 18 of the shell 12 is provided with an annular depending flange 20y and a central spindle 22 utilized for centering the shell 12 with respect to the outer casing.
  • a wall portion 26 extends linearly downwardly for a predetermined distance, then merges smoothly into an inwardly and downwardly inclined wall portion 28 which in turn merges into another linearly extending wall portion 30.
  • Another portion of the centrifuge assembly or separating means 10 is the center or filler piece designated generally by the reference number 32.
  • This filler piece is suitably suspended within the shell 12 in a manner to be more fully described hereinafter.
  • a central bore 34 extends completely from the lower surface 36 of the ller piece 32 to the upper surface thereof.
  • a depression 38 is provided in the upper surface 40 of the ller piece 32 and an O-ring 42 seals this depression 38 against a protrusion 44 on the cover member 46 thereby providing an enlarged cavity 48.
  • This bore 34 provides the input channel for the blood and the cavity 48 permits communication between the bore 34 which is axial and radially offset passageway means 50 for carrying the blood from the seal means in a manner to be described in more ⁇ detail hereinafter.
  • This arrangement dilfers from the construction of the separating means in the aforementioned copending application and permits the use of the axial passageway means into the seal means for packed red blood cells which are more sensitive to damage than the whole blood itself.
  • the ller piece 32 is cylindrically shaped for the most part and of a somewhat smaller diameter than that of the shell wall portion 30. As such, the outer or sidewall 52 of the filler piece 32 is spaced slightly away from the wall portion 30 to thereby provide the other boundary of the separation channel 24. This channel extends with uniform thickness substantially for the height of the shell wall portion 30. Substantially opposite to the inclined portion 28 of the centrifuge shell, the sidewall 52 of the ller piece is radially curved as shown at 54. This curve merges into an inwardly extending shoulder portion 56 which again turns into an upwardly extending portion at 58 to blend into the top surface 40.
  • the filler piece 32 is secured to the cover member 46 by bolts or the like 60 which also function to secure a holding member 62 in the related assembly.
  • the top cover 46 is preferably fabricated of a clear plastic material 'which permits visual observation of the separation occurring within the centrifuge.
  • This top cover member includes a flange portion 64 which abuts against the top of the flange portion 16 of the centrifuge shell 12 with bolts 66 securing these elements in related assembly. Gasket means (not shown) are included to preclude against leakage between these parts.
  • the flange portion 64 of the cover member 46 includes an angularly offset portion 68 designed to rest upon, and be frictionally driven by, a driving means (not shown). This manner of rotating the separating means differs slightly from the construction shown in the aforementioned application and has been found to provide better overall operation.
  • a short vertical wall portion 70 extends downwardly from the ange portion 64 of the top cover 46 to mate contiguously with the Wall portion 26 of the centrifuge shell 12, thereby properly positioning the cover on the shell.
  • At the end of the vertical wall portion 70 there is a horizontally or radially inwardly stepped portion 72 which merges with the top of another short vertical 'wall portion 74.
  • At the bottom of the wall portion 74 there is another radially inwardly stepped portion 76 which merges with the top of a further vertical wall portion 78.
  • the bottom of this vertical wall portion 78 merges with the bottom surface 80 ⁇ of the cover member 46 which rests on the top surface 40 of the ller piece 32.
  • the ⁇ attachment of the filler piece 32 to the cover member 46 is arranged such that the bottom surface 36 of the filler piece 32 is spaced slightly from the bottom inner surface 82 of the shell 12 to provide a channel 84 through which the whole blood flowing through the bore 34 can spread outwardly to the separation channel 24 and then climb upwardly therealong as the centrifuge is operated.
  • the seal means of the instant invention is designated generally by the reference numeral and includes a lower or rotating element 102 and an upper or stationary element 104.
  • the lower or rotating element 102 fits within a rst stepped recess or portion 106 on the top of the cover member 46.
  • a second stepped recess or portion 108 is also provided in the top of the cover member 46 with the stepped portion 108 being somewhat smaller than the stepped portion 106.
  • the stepped portion 108 contains a plurality of spaced grooves concentrically arranged around the central axis thereof with O-rings having a rectangular cross-sectional configuration being mounted within each of these grooves.
  • All of the O-rings have been designated generally by the reference numeral 110, but it will be appreciated that the size or diameter of such O-rings continually increases. Since the bottom of the rotating element 102 abuts against the top of the various O-rings 110, the overall effect of such arrangement is to set olf a series of channels or annular spaces between the stepped portion 108 and the bottom of the rotating element 102.
  • the smallest or innermost O-ring 110 defines therewithin a circular opening or channel means designated 112, with such channel means being axially aligned with the central or rotational axis of the centrifuge means 10. Between this innermost O-ring and the next adjacent O-ring, a first annular channel means 114 is formed.
  • a second annular channel 116 is formed between the second O-ring and the next adjacent O-ring.
  • a third or outer annular channel means 118 is formed between said next adjacent O-ring and the outermost O-ring.
  • Each of these channel means serves to receive either the whole blood or the one of the fractional components as will be explained in more detail hereinafter.
  • the separation channel 24 preferably having an optimum radial dimension of approximately l mm., extends upwardly with uniform thickness until it reaches the inclined wall portion 28 of the centrifuge shell 12. At this point, the separation channel 24 merges into an enlarged separation space 120. When whole blood enters the centrifuge means it travels downwardly through the central bore 34, then outwardly in the separation channel 84 and upwardly through the separation channel 24 to enter the space 120.
  • Such climbing action is created by a combination of the centrifugal force generated by rotation of the centrifugal shell 12, the filler piece 32 and the top cover 46 and the action of the various pumps described in more detail in the aformentioned copending application. Due to this centrifugal force, the whole blood starts to separate as it begins to climb through the separation channel 24 and due to the difference in specific gravities of the various fractions thereof.
  • the packed red cells are the most dense of the fractions, and these are thus packed outermost within the space 120.
  • the white cells are the next most dense and these are thus positioned adjacent the red cells and the plasma is the least dense and hence is disposed furtherest inwardly within the centrifuge.
  • blood is shown in the bore 34, in the separation channel 84 and in the lower portion of the separation channel 24.
  • the packed red cells are designated R
  • the white cells are designated W
  • the plasma is designated P.
  • the various fractions are fully separated in the separation space 120 and the quantity of white cells is extremely small whereby, initially, there is merely an interface between the plasma P and the packed red cells R.
  • Proper regulation of the various pumps associated with the separation system adjusts the plasmared cell interface line to space the same closer to the shell wall 26 or further away therefrom.
  • the white cells W start to build up within the centrifuge to form a buffy coat of the shape generally illustrated in FIG. 1. It will be seen that the white cell layer effectively oats between the red cells and plasma.
  • a first radial channel 124 communicates at one end with the separation space 120 at the wall portion 58 to receive the layer of plasma, and this radial channel 124 turns upwardly at 126 to communicate at its opposite end with the channel means 118 for removal of plasma P through the seal means 100.
  • a second radial channel 128 communicates at one end with the separation space 120 at the wall portion 78 and turns upwardly as at 130 to communicate at its opposite end with the channel means 116 for removal of white blood cells W through the seal means 100.
  • a third radial channel 132 communicates at one end with the separation space 120 at the wall portion 74 and turns upwardly as at 134 to lform a portion which is co-axial with the center of rotation of the centrifuge means 10 and which communicates at its opposite end with the channel means 112 for removal of the packed red blood cells R through the seal means 100.
  • each of the individual fractions of the blood is transferred to its own particular channel means between the top cover 46 and the seal means 100.
  • FIGS. 2-5 show in further detail the rotating element 102 and the fixed element 104.
  • the rotating element 102 is preferably formed of a ceramic material which has been found to ibe dimensionally stable under the conditions of use. As mentioned previously, it was found that Teiion had a tendency to warp from the heat of the blood and the operation of the device causing a reduction in the effectiveness of the seal. Manufacture of the rotating element 102 from ceramic material precludes this disadvantage.
  • the rotating element 102 has a circular base portion 140 with a at bottom surface 142.
  • this base portion corresponds substantially to the size of the stepped portion 106 in the cover member 46 and, as mentioned previously, when the rotating element 102 is positioned within the top cover 46, the bottom surface 142 abuts against the top of the O-rings 110.
  • a small notch 144 can be provided in the periphery of the base portion 140, if desired. This notch 144 may mate With a guide pin 146 positioned at one edge of the stepped recess 106 in the top cover 46.
  • Further means of securing the rotating element 102 to the top cover 46 comprises the pressure plate 62 which includes an inwardly directed ange 148 which seats over the base portion 140 of the rotating element 102 as shown in FIG. 1.
  • the bolts 60 function to secure this element to the filler piece 32 through the top cover 46 thereby securing the entire assembly together.
  • separate bolts may be utilized to secure the cover member 46 to the filler piece 32 and to secure the pressure plate 62 to the cover member 46.
  • the pressure plate 62 may merely function to assist in securing the rotating element 102 in position, with its primary function being as a handle to facilitate removal of the centrifuge means 10 from the casing (not shown) in which it is mounted in the assembly.
  • an outstanding peripheral flange 150 may be provided on the pressure plate or handle 62.
  • the rotating element 102 also includes an upstanding cylindrical body portion 152 integral with the base portion 140, but having a cross-sectional diameter somewhat smaller than that of the base portion 140.
  • the top surface 154 of the rotating element 102 is planar according to the instant inventive concepts, although, if desired, mating portions of the channel means and groove means defined in the fixed element 104 and to be described in more detail hereinafter, may be provided in the top surface 154. However, it has been found that a better seal is provided if this element has a planar top surface.
  • a central bore 156 is provided which functions as a passageway means for withdrawing packed red blood cells from the channel means 112 through the rotating element 102.
  • a plurality of additional bores or passageway means 158 are arranged concentrically about the central bore 156 in communication with the channel means 114 and in communication with the channel means for the whole blood to lbe provided at the interface between the rotating and fixed elements as described in more detail hereinafter.
  • Additional concentrically arranged bores or passageway means 160 are provided in communication with the channel means 116 for carrying white blood cells through the rotating element 102 and still further concentrically arranged bores or passageway means 162 are provided to communicate with the channel means 118 for carrying plasma through the rotating element 102.
  • the bores 158, 160 and 162 are arranged on concentric circles of increasing diameter. These circles correspond to the mean diameters of the channel means provided at the interface between the fixed and rotating elements as will be explained in further detail hereinafter.
  • the fixed element 102 is formed of ceramic and thus, is not subject to dimensional change or instability during use.
  • This element is preferably formed of stainless steel and has a fiat lower surface 164 which is preferably lapped to a fiatness of 3 light waves or less and which rests on the upper surface 154 of the rotating element 102, this upper surface 154 also preferably being lapped to a iiatness of 3 light waves or less.
  • a central bore 166 is defined in the fixed element 104 and is aligned with the central bore 156 of the rotating element 102 to receive the packed red blood cells therefrom and pass the same to tubing 167 for removal from the separating means 10.
  • Concentrically arranged annular channel means 168, 170 and 172 are designed to mate with the openings at the tops of the passageway means 158, 160 and 162 in the rotating element 102. Bores or passageway means 174, 176 and 178 communicate with the channel means 168, 170 and 172 respectively at one end and with flexible tubing 180, 182 and 184 at their opposite ends.
  • whole blood is passed, from a source of the same, in a continuous blood separator, from the donor, through the tubing 180 to bore 174, the channel means 168, the passageway means 158, the channel means 114, the bore 50 and the cavity 48 to the separating means.
  • White blood cells pass from the separating means through the channel means 116, the passageway means 160, the channel means 170, the passageway means 176 and the tubing 182 to any desired location.
  • the plasma when received from the separating means 10, passes through the channel means 118, the passageway mean 162, the channel means 172, the passageway means 178 and the tubing 184 to any desired location, generally back to the donor in a continuous blood separator.
  • annular channel means 190 is provided in the fixed element 104 to define a saline-receiving channel to cool the seal means 100 and to provide an air barrier to protect the blood and other fractional components in the remainder of the seal means 100 against the entrance of air.
  • Tubing 192 communicates through a bore 194 with this outer channel means for introduction, generally by gravity, of saline to the channel means 190 and tubing 196 communicates with the channel means 190 through a bore 198 for slow removal of saline therefrom.
  • a clamp or the like may be utilized on the tubing 196 to regulate removal of saline from the channel means 190.
  • a mojor feature of the instant inventive concepts is the provision of groove means 200 in the lands separating the various channel means in the fixed element 104. These groove means 200 communicate through a passageway means 202 with a tube 204. Saline under pressure is fed through the tube 204 to the groove means 200. The pressure of the saline in these groove means is at least as great as the pressure of the blood or the fractional components thereof in the various channel means. With a continuous flow blood separator of the type shown in the aforementioned copending application, the blood could be under arterial pressure whereby the pressure of the saline in the groove means 200 is at least this great. Preferably, saline is forced into the groove means 200 at a pressure in excess of arterial pressure.
  • Arterial pressure is generally considered to be about 200 mrn. of mercury and the pres sure behind the saline in the groove means 200 is preferably from about 10-12 p.s.i. at a iiow rate of about 20 ml./hr.
  • a portion of the saline is caused to iiow laterally from earh of the groove means arross the interface toward juxtaposed channel means to assist in precluding seepage of the blood and components across the interface which, as mentioned previously, may damage the various materials in the channel means and may cause mixing of the same. Leakage of the saline from the outer groove means 200 around the periphery of the seal means will not cause any difficulty and will merely fiow downwardly into the separating means 10.
  • said blood separator includes means for continuously withdrawing blood from a donor and means for continuously returning at least one of said fractional components thereof to the donor after separation, said saline feeding means forcing saline into each of said groove means at a pressure at least equal to arterial pressure.
  • said channel means includes a central channel means coincident with the axis of rotation of said seal means and at least two circular channel means concentric with said central channel means, said circular channel means being radially spaced from said central channel means and from each other, said groove means being provided at least between said central channel means and the rst concentric circular channel means and between each additional pair of juxtaposed circular channel means.
  • one of said fractional components includes packed red blood cells
  • said passageway means including an axial passageway means in said rotating element communicating the portion of said separating means containing said packed red blood cells with said central channel means and an axial passageway means in said fixed element communicating with said central channel means for withdrawing said red blood cells from said seal means.
  • said xed and rotating elements each have a planar face portion, said planar face portions abutting each other and together deining said interface, and all of said channel means and all of said groove means being delined in said planar face portion of said xed element.

Description

July 7, 197() R 1 EISEL ET AL SQ SEAL MEANS FOR BLOOD SEPARATOR AND THE LIKE Filed May '7, 1968 2 Sheets-Sheet l IOO /f// @o l MMM/m4 m8x /OZ 4,0 /gl v50 E G4 e Tl aff/45445470131,:152m 4e e@ l0 14 04989/14123/ es 16 e 0 z "LG @all l w La A w--fx july 7, fg@ R- J ElsEL ET AL 3,59,
SEAL MEANS FOR BLOOD SEPARATOR AND THE LIKE Filed May '7, 1968 2 Sheets-Sheet 2 United States Patent O 3,519,201 SEAL MEANS FOR BLOOD SEPARATOR AND THE LIKE Robert J. Eisel, Kensington, and William B. Greenough III, Baltimore, Md., and Robert M. Kellogg, Endwell, N.Y., assignors to the United States of America as represented by the Secretary, Department of Health, Education, and Welfare Filed May 7, 1968, Ser. No. 727,192 Int. Cl. B04b 11/00; A61m 5/00 U.S. Cl. 233-21 10 Claims ABSTRACT F THE DISCLOSURE Sealing means for use with a face seal having one fixed element and one rotating element particularly for use with a continuous blood flow separator. Saline under pressure is forced into groove means between the channel means at the interface of the seal means to preclude seepage of the materials in the channel means across the interface. According to a preferred arrangement the most sensitive material, such as packed red blood cells, is removed through the most direct pathway to preclude damage thereto. Preferably, the rotating element is formed of ceramic and the fixed element is formed of stainless steel.
This invention relates to a sealing means for use with a face seal having one fixed element and one rotating element. More specifically, this invention is directed to a modi-tied and improved sealing means for use with a continuous flow blood separator of the type described in detail in copending application Ser. No. 570,792 filed Aug. 8, 1966, in the names of George T. Judson and Emil J. Freireich, and assigned to the same assignee as the instant application. The disclosure of the aforementioned copending application is incorporated herein by reference in its entirety.
The provision of a sealing means between fixed and rotating elements provides obvious difficulties. Such a sealing means has general applicability, for example, in centrifuge devices or separating means wherein a fluid is separated into a plurality of components by centrifugal force. With such devices the fluid must be fed into the bowl of the centrifuge and the separated components of the fluid must be removed therefrom after centrifugation. Since portions of the centrifuge are rotating at high speeds, and since the source of the fluid and the depository for the components are usually stationary, a sealing means must be interposed which is effective to prevent leakage between a stationary or xed element into which the fluid is fed and from which the components are withdrawn, and a rotating element which receives the iiuid from the xed element and feeds the same to the bowl of the separator and which receives the fractional components from the separator and feeds the same to the fixed element for withdrawal from the device. The difficulties of such an operation are believed obvious.
Such difficulties are'compounded when the fluid being separated is blood or any other material particularly sensitive to damage. Further, when the fluid is blood withdrawn directly from a donor, with certain of the fractional components being returned directly to the donor in a continuous separation system, any damage to the components has even greater significance since there is relatively little opportunity to monitor the same before they are returned to the donor. The aforementioned copending application discloses such a continuous flow blood separator and provides a face seal adapted to prevent leakage between the fixed and rotating elements of the centrifuge thereof. This face seal, while "ice generally satisfactory, has been subject to certain problerns. Particularly, it has been found that in some instances the blood or fractional components thereof have a tendency to seep across the lands separating the channels defined at the interface between the fixed and rotating elements. In addition to such seepage causing a mixture of the various materials which in itself is undesirable, the high shear to which such materials are subjected during seepage across the interface has been found to damage the materials. It is this problem with which the instant invention is primarily concerned.
Other difficulties have also been encountered with the face seal disclosed in the aforementioned copending application. One of the fractional components being separated from the blood is packed red blood cells, a material which is particularly sensitive. In the face seal of the copending application, the blood itself is fed through a central axial passageway which extends through both the fixed and rotating elements, and the fractional components are withdrawn through aligned concentric channels in the fixed and rotating elements. Removal of the packed red blood cells through one of the annular channels necessitates the passage of this material through a somewhat tortuous route. It is preferred that this particularly sensitive component of the blood be handled in the most delicate manner and the instant inventive concepts modify the face seal of the copending application to effect this result.
One further difiiculty found with the sealing means of the prior application results from the preferred material utilized in the manufacture of the rotating element. A synthetic resin, specifically polytetrafluoroethylene (Teflon), was initially utilized for the formation of the rotating element, but it has now been found that this material is subject to warping in use. Due to the necessity for extremely accurate mating of the fixed and rotating elements, even slight dimensional changes of the rotating element can reduce the effectiveness of the seal. The instant invention replaces the Teflon rotating element with an element formed of a material which is dimensionally stable under the conditions of use.
Although the instant inventive concepts are applicable to any sealing means wherein fixed and rotating elements are found, since the most important application of the sealing means is in a continuous flow blood separator of the type disclosed in the aforementioned copending application, the preferred embodiments hereof will be discussed in relation thereto.
`Considering the foregoing, it is a primary object of the instant invention to provide a sealing means of the type described which is free from the foregoing and other such disadvantages. A basic and important objective of this invention is the provision of a sealing means which precludes lateral seepage of blood or fractional components thereof across the interface defined between the fixed and rotating elements. In this regard, the instant inventive concepts provide means intermediate each juxtaposed pair of channels in the face seal which acts as a barrier to such seepage.
Yet another important object of the instant invention is the provision of an arrangement for a face seal wherein the most sensitive component, that is, the packed red blood cells, are passed through the most direct path to preclude any damage thereto.
Further, another important object of this invention is the provision of a face seal wherein the rotating element is formed of a material which is not subject to dimensional change or warpage during use.
Other and further objects of the instant inventive concepts will either be specifically mentioned in the following detailed description or will be obvious therefrom.
3 Such detailed description makes reference to the accompanying drawing wherein:
FIG. 1 is a vertical cross-sectional view through a centrifuge means incorporating a face seal according to the instant inventive concepts;
FIG. 2 is a bottom plan view of the fixed or stationary element of the face seal;
FIG. 3 is a transverse cross-sectional view taken substantially on lines 3--3 of FIG. 2;
FIG. 4 is a top plan view of the rotating element of the face seal; and
FIG. 5 is a transverse cross-sectional view taken substantially on lines 5-5 of FIG. 4, showing cooperating portions of the centrifuge means in dotted lines.
Like reference characters refer to like parts throughout the several views of the drawing.
Reference may be made to the aforementioned copending application which, as has been mentioned hereinabove, is incorporated herein by reference in its entirety, to provide further background on the preferred system with which the improvements of the instant application may be utilized. In such system, whole blood is withdrawn directly from a donor, separated in a centrifuge means into red blood cells, white blood cells or buffy coat and plasma, with one or more of the fractional components being returned directly to the donor from the centrifuge means. Of course, various safety devices are included in the system and the use of these devices would be equally applicable to the means of the instant invention. Additionally, platelets can be withdrawn either with the white blood cells or 'with the plasma and subsequently separated in a second centrifuge, if desired. Further, the various operating means including pumps and the like shown. in the aforementioned copending application are all applicable to use with the modified means of the instant invention.
The basic centrifuge means is designated generally by the reference numeral in FIG. l and includes a bowl or shell y12 disposed within a casing (not shown) which is utilized to rotate the bowl and its associated elements about a central axis. The shell 12 has an upstanding cylindrical sidewall means 14 Which terminates in an outwardly and upwardly directed flange 16. The bottom wall 18 of the shell 12 is provided with an annular depending flange 20y and a central spindle 22 utilized for centering the shell 12 with respect to the outer casing.
The interior of the sidewalls 14 of the shell 12 serve to provide the outer boundary for the separation channel 24. Starting iat the top of the shell 12, a wall portion 26 extends linearly downwardly for a predetermined distance, then merges smoothly into an inwardly and downwardly inclined wall portion 28 which in turn merges into another linearly extending wall portion 30.
Another portion of the centrifuge assembly or separating means 10 is the center or filler piece designated generally by the reference number 32. This filler piece is suitably suspended within the shell 12 in a manner to be more fully described hereinafter. A central bore 34 extends completely from the lower surface 36 of the ller piece 32 to the upper surface thereof. A depression 38 is provided in the upper surface 40 of the ller piece 32 and an O-ring 42 seals this depression 38 against a protrusion 44 on the cover member 46 thereby providing an enlarged cavity 48. This bore 34 provides the input channel for the blood and the cavity 48 permits communication between the bore 34 which is axial and radially offset passageway means 50 for carrying the blood from the seal means in a manner to be described in more `detail hereinafter. This arrangement dilfers from the construction of the separating means in the aforementioned copending application and permits the use of the axial passageway means into the seal means for packed red blood cells which are more sensitive to damage than the whole blood itself.
The ller piece 32 is cylindrically shaped for the most part and of a somewhat smaller diameter than that of the shell wall portion 30. As such, the outer or sidewall 52 of the filler piece 32 is spaced slightly away from the wall portion 30 to thereby provide the other boundary of the separation channel 24. This channel extends with uniform thickness substantially for the height of the shell wall portion 30. Substantially opposite to the inclined portion 28 of the centrifuge shell, the sidewall 52 of the ller piece is radially curved as shown at 54. This curve merges into an inwardly extending shoulder portion 56 which again turns into an upwardly extending portion at 58 to blend into the top surface 40.
The filler piece 32 is secured to the cover member 46 by bolts or the like 60 which also function to secure a holding member 62 in the related assembly.
The top cover 46 is preferably fabricated of a clear plastic material 'which permits visual observation of the separation occurring within the centrifuge. This top cover member includes a flange portion 64 which abuts against the top of the flange portion 16 of the centrifuge shell 12 with bolts 66 securing these elements in related assembly. Gasket means (not shown) are included to preclude against leakage between these parts. Additionally, the flange portion 64 of the cover member 46 includes an angularly offset portion 68 designed to rest upon, and be frictionally driven by, a driving means (not shown). This manner of rotating the separating means differs slightly from the construction shown in the aforementioned application and has been found to provide better overall operation.
A short vertical wall portion 70 extends downwardly from the ange portion 64 of the top cover 46 to mate contiguously with the Wall portion 26 of the centrifuge shell 12, thereby properly positioning the cover on the shell. At the end of the vertical wall portion 70, there is a horizontally or radially inwardly stepped portion 72 which merges with the top of another short vertical 'wall portion 74. At the bottom of the wall portion 74, there is another radially inwardly stepped portion 76 which merges with the top of a further vertical wall portion 78. The bottom of this vertical wall portion 78 merges with the bottom surface 80` of the cover member 46 which rests on the top surface 40 of the ller piece 32.
The `attachment of the filler piece 32 to the cover member 46 is arranged such that the bottom surface 36 of the filler piece 32 is spaced slightly from the bottom inner surface 82 of the shell 12 to provide a channel 84 through which the whole blood flowing through the bore 34 can spread outwardly to the separation channel 24 and then climb upwardly therealong as the centrifuge is operated.
The seal means of the instant invention is designated generally by the reference numeral and includes a lower or rotating element 102 and an upper or stationary element 104. The lower or rotating element 102 fits within a rst stepped recess or portion 106 on the top of the cover member 46. A second stepped recess or portion 108 is also provided in the top of the cover member 46 with the stepped portion 108 being somewhat smaller than the stepped portion 106. The stepped portion 108 contains a plurality of spaced grooves concentrically arranged around the central axis thereof with O-rings having a rectangular cross-sectional configuration being mounted within each of these grooves. All of the O-rings have been designated generally by the reference numeral 110, but it will be appreciated that the size or diameter of such O-rings continually increases. Since the bottom of the rotating element 102 abuts against the top of the various O-rings 110, the overall effect of such arrangement is to set olf a series of channels or annular spaces between the stepped portion 108 and the bottom of the rotating element 102. The smallest or innermost O-ring 110 defines therewithin a circular opening or channel means designated 112, with such channel means being axially aligned with the central or rotational axis of the centrifuge means 10. Between this innermost O-ring and the next adjacent O-ring, a first annular channel means 114 is formed. Between the second O-ring and the next adjacent O-ring, a second annular channel 116 is formed. Finally, between said next adjacent O-ring and the outermost O-ring, a third or outer annular channel means 118 is formed. Each of these channel means serves to receive either the whole blood or the one of the fractional components as will be explained in more detail hereinafter.
To more fully understand the nature of the separation or fractionation which occurs within the centrifuge means 10, it can be seen that the separation channel 24, preferably having an optimum radial dimension of approximately l mm., extends upwardly with uniform thickness until it reaches the inclined wall portion 28 of the centrifuge shell 12. At this point, the separation channel 24 merges into an enlarged separation space 120. When whole blood enters the centrifuge means it travels downwardly through the central bore 34, then outwardly in the separation channel 84 and upwardly through the separation channel 24 to enter the space 120. Such climbing action is created by a combination of the centrifugal force generated by rotation of the centrifugal shell 12, the filler piece 32 and the top cover 46 and the action of the various pumps described in more detail in the aformentioned copending application. Due to this centrifugal force, the whole blood starts to separate as it begins to climb through the separation channel 24 and due to the difference in specific gravities of the various fractions thereof. The packed red cells are the most dense of the fractions, and these are thus packed outermost within the space 120. The white cells are the next most dense and these are thus positioned adjacent the red cells and the plasma is the least dense and hence is disposed furtherest inwardly within the centrifuge. For purposes of illustration, blood is shown in the bore 34, in the separation channel 84 and in the lower portion of the separation channel 24. The packed red cells are designated R, the white cells are designated W, and the plasma is designated P. The various fractions are fully separated in the separation space 120 and the quantity of white cells is extremely small whereby, initially, there is merely an interface between the plasma P and the packed red cells R. Proper regulation of the various pumps associated with the separation system, as explained in more detail in the aforementioned copending application, adjusts the plasmared cell interface line to space the same closer to the shell wall 26 or further away therefrom. However, after the blood has been separating for awhile, the white cells W start to build up within the centrifuge to form a buffy coat of the shape generally illustrated in FIG. 1. It will be seen that the white cell layer effectively oats between the red cells and plasma.
A first radial channel 124 communicates at one end with the separation space 120 at the wall portion 58 to receive the layer of plasma, and this radial channel 124 turns upwardly at 126 to communicate at its opposite end with the channel means 118 for removal of plasma P through the seal means 100. A second radial channel 128 communicates at one end with the separation space 120 at the wall portion 78 and turns upwardly as at 130 to communicate at its opposite end with the channel means 116 for removal of white blood cells W through the seal means 100. A third radial channel 132 communicates at one end with the separation space 120 at the wall portion 74 and turns upwardly as at 134 to lform a portion which is co-axial with the center of rotation of the centrifuge means 10 and which communicates at its opposite end with the channel means 112 for removal of the packed red blood cells R through the seal means 100. Thus, each of the individual fractions of the blood is transferred to its own particular channel means between the top cover 46 and the seal means 100.
Although only a single channel has been shown communicating the separation space with the individual channel means defined between the top cover 46 and the seal means 100, it will be understood that such an arrangement is illustrative and a plurality of ports or channels can be provided to carry each of the fractional components of the blood to their respective channel means. Additionally, as will be readily understood that those skilled in the art, these fractional components are withdrawn from the separating means 10 with the aid of pumps as explained in more det-ail in the aforementioned copending patent application.
To understand the nature and construction of the seal means 100, attention is directed particularly to FIGS. 2-5 which show in further detail the rotating element 102 and the fixed element 104. The rotating element 102 is preferably formed of a ceramic material which has been found to ibe dimensionally stable under the conditions of use. As mentioned previously, it was found that Teiion had a tendency to warp from the heat of the blood and the operation of the device causing a reduction in the effectiveness of the seal. Manufacture of the rotating element 102 from ceramic material precludes this disadvantage. The rotating element 102 has a circular base portion 140 with a at bottom surface 142. The size of this base portion corresponds substantially to the size of the stepped portion 106 in the cover member 46 and, as mentioned previously, when the rotating element 102 is positioned within the top cover 46, the bottom surface 142 abuts against the top of the O-rings 110. To prevent relative rotation between the rotating element 102 and the cover member 46, a small notch 144 can be provided in the periphery of the base portion 140, if desired. This notch 144 may mate With a guide pin 146 positioned at one edge of the stepped recess 106 in the top cover 46. Further means of securing the rotating element 102 to the top cover 46 comprises the pressure plate 62 which includes an inwardly directed ange 148 which seats over the base portion 140 of the rotating element 102 as shown in FIG. 1. The bolts 60 function to secure this element to the filler piece 32 through the top cover 46 thereby securing the entire assembly together. Alternatively, separate bolts may be utilized to secure the cover member 46 to the filler piece 32 and to secure the pressure plate 62 to the cover member 46. Further, the pressure plate 62 may merely function to assist in securing the rotating element 102 in position, with its primary function being as a handle to facilitate removal of the centrifuge means 10 from the casing (not shown) in which it is mounted in the assembly. To this end, an outstanding peripheral flange 150 may be provided on the pressure plate or handle 62.
The rotating element 102 also includes an upstanding cylindrical body portion 152 integral with the base portion 140, but having a cross-sectional diameter somewhat smaller than that of the base portion 140. The top surface 154 of the rotating element 102 is planar according to the instant inventive concepts, although, if desired, mating portions of the channel means and groove means defined in the fixed element 104 and to be described in more detail hereinafter, may be provided in the top surface 154. However, it has been found that a better seal is provided if this element has a planar top surface.
At the center of the rotating element 102, a central bore 156 is provided which functions as a passageway means for withdrawing packed red blood cells from the channel means 112 through the rotating element 102. The upper portion of this passageway means 156 and the lower portion of an aligned passageway means in the fixed element 104 to be described in more detail hereinafter together define a channel means for the red blood cells at the interface between these elements.
In addition to the central bore or passageway means 156 a plurality of additional bores or passageway means 158 are arranged concentrically about the central bore 156 in communication with the channel means 114 and in communication with the channel means for the whole blood to lbe provided at the interface between the rotating and fixed elements as described in more detail hereinafter. Additional concentrically arranged bores or passageway means 160 are provided in communication with the channel means 116 for carrying white blood cells through the rotating element 102 and still further concentrically arranged bores or passageway means 162 are provided to communicate with the channel means 118 for carrying plasma through the rotating element 102. The bores 158, 160 and 162, as will be seen from the drawing, are arranged on concentric circles of increasing diameter. These circles correspond to the mean diameters of the channel means provided at the interface between the fixed and rotating elements as will be explained in further detail hereinafter.
As mentioned previously, the fixed element 102 is formed of ceramic and thus, is not subject to dimensional change or instability during use.
As will be seen, there is a series of annular lands formed by the top surface 154 of the rotating element 102. These lands act as boundaries between the various passageway means, and as will be explained in further detail hereinafter, cooperate with certain groove means in the fixed element 104 to preclude cross-over or seepage between the various channel means carrying the whole blood and fractional components thereof.
By referring now more particularly to FIGS. 2 and 3, the exact nature of the upper or fixed seal means 104 will be better understood. This element is preferably formed of stainless steel and has a fiat lower surface 164 Which is preferably lapped to a fiatness of 3 light waves or less and which rests on the upper surface 154 of the rotating element 102, this upper surface 154 also preferably being lapped to a iiatness of 3 light waves or less. A central bore 166 is defined in the fixed element 104 and is aligned with the central bore 156 of the rotating element 102 to receive the packed red blood cells therefrom and pass the same to tubing 167 for removal from the separating means 10. This use of a continuous central bore through the seal means 100 to carry the packed red blood cells functions to provide a more direct pathway for the red blood cells which, as mentioned, previously, are particularly sensitive. Concentrically arranged annular channel means 168, 170 and 172 are designed to mate with the openings at the tops of the passageway means 158, 160 and 162 in the rotating element 102. Bores or passageway means 174, 176 and 178 communicate with the channel means 168, 170 and 172 respectively at one end and with flexible tubing 180, 182 and 184 at their opposite ends. In this manner, whole blood is passed, from a source of the same, in a continuous blood separator, from the donor, through the tubing 180 to bore 174, the channel means 168, the passageway means 158, the channel means 114, the bore 50 and the cavity 48 to the separating means. White blood cells pass from the separating means through the channel means 116, the passageway means 160, the channel means 170, the passageway means 176 and the tubing 182 to any desired location. The plasma, when received from the separating means 10, passes through the channel means 118, the passageway mean 162, the channel means 172, the passageway means 178 and the tubing 184 to any desired location, generally back to the donor in a continuous blood separator.
Finally, an annular channel means 190 is provided in the fixed element 104 to define a saline-receiving channel to cool the seal means 100 and to provide an air barrier to protect the blood and other fractional components in the remainder of the seal means 100 against the entrance of air. Tubing 192 communicates through a bore 194 with this outer channel means for introduction, generally by gravity, of saline to the channel means 190 and tubing 196 communicates with the channel means 190 through a bore 198 for slow removal of saline therefrom. A clamp or the like (not shown) may be utilized on the tubing 196 to regulate removal of saline from the channel means 190.
A mojor feature of the instant inventive concepts is the provision of groove means 200 in the lands separating the various channel means in the fixed element 104. These groove means 200 communicate through a passageway means 202 with a tube 204. Saline under pressure is fed through the tube 204 to the groove means 200. The pressure of the saline in these groove means is at least as great as the pressure of the blood or the fractional components thereof in the various channel means. With a continuous flow blood separator of the type shown in the aforementioned copending application, the blood could be under arterial pressure whereby the pressure of the saline in the groove means 200 is at least this great. Preferably, saline is forced into the groove means 200 at a pressure in excess of arterial pressure. Arterial pressure is generally considered to be about 200 mrn. of mercury and the pres sure behind the saline in the groove means 200 is preferably from about 10-12 p.s.i. at a iiow rate of about 20 ml./hr. Thus, a portion of the saline is caused to iiow laterally from earh of the groove means arross the interface toward juxtaposed channel means to assist in precluding seepage of the blood and components across the interface which, as mentioned previously, may damage the various materials in the channel means and may cause mixing of the same. Leakage of the saline from the outer groove means 200 around the periphery of the seal means will not cause any difficulty and will merely fiow downwardly into the separating means 10.
Reference may be made to the aforementioned copending application wherein a pivotally carried arm means is shown which cooperates with the seal means to press downwardly on the fixed element 104 during use. This arm means (not shown herein) may be readily raised to remove the centrifuge assembly when desired.
It is believed that the operation of the separating means will be readily understood from the foregoing detailed descirption. It can be seen that there is herein provided an improved construction of such separating means, and particularly the seal means thereof, which satisfies all of the objectives of the instant invention and others, including many advantages of great practical utility and commercial importance. Since many embodiments may be made of the instant inventive concepts, and since many modifications may be made of the embodiments herein before shown and described, it is to be understood that all matter is to be interpreted merely as illustrative and not in a limiting sense.
Accordingly, what is claimed is:
1. In a blood separator of the type wherein means are provided for separating blood from a source of the` same into a plurality of fractional components, said blood separator having seal means associated with the separating means, said seal means including a fixed element and a rotating element having portions which abuttingly engage each other to define an interface therebetween, portions of said seal means defining spaced channel means at said interface for receiving in different channel means either blood to be separated from said source or fractional components of the separated blood from said separating means, and separate passageway means communicating with said seal means for bringing said blood to one of said channel means from said source through said fixed element, for feeding said blood from said one channel means to said separating means through said rotating element, for bringing said fractional components of said blood from said separating means to others of said channel means through said rotating element, and for withdrawing said fractional components from said other channel means through said fixed element, the improvement which comprises:
(a) portions of said seal means defining groove means at said interface between said pair of juxtaposed channel means, and
(b) means for feeding saline solution into each of said groove means at a pressure at least as great as the pressure of said blood and fractional components thereof in said juxtaposed channel means.
2. The improvement of claim 1 wherein said blood separator includes means for continuously withdrawing blood from a donor and means for continuously returning at least one of said fractional components thereof to the donor after separation, said saline feeding means forcing saline into each of said groove means at a pressure at least equal to arterial pressure.
3. The improvement of claim 2 wherein said saline feeding means forces saline into each of said groove means at a pressure in excess of arterial pressure.
4. The improvement of claim 1 wherein said saline feeding means forces saline into each of said groove means at a pressure suicient to cause a portion of said saline to flow laterally from each of said groove means across said interface toward juxtaposed channel means.
5. The improvement of claim 1 wherein said channel means includes a central channel means coincident with the axis of rotation of said seal means and at least two circular channel means concentric with said central channel means, said circular channel means being radially spaced from said central channel means and from each other, said groove means being provided at least between said central channel means and the rst concentric circular channel means and between each additional pair of juxtaposed circular channel means.
6. The improvement of claim S wherein one of said fractional components includes packed red blood cells, said passageway means including an axial passageway means in said rotating element communicating the portion of said separating means containing said packed red blood cells with said central channel means and an axial passageway means in said fixed element communicating with said central channel means for withdrawing said red blood cells from said seal means.
7. The improvement of claim 1 further including portions of said seal means defining an outer channel means at said interface for receiving saline solution to cool said seal means and to provide an air barrier to protect said blood and said fractional components in the remainder of said channel means, means for feeding saline solution to said outer channel means, and means for slowly removing said saline solution from said outer channel means.
8. The improvement of claim 1 wherein said xed and rotating elements each have a planar face portion, said planar face portions abutting each other and together deining said interface, and all of said channel means and all of said groove means being delined in said planar face portion of said xed element.
9. The improvement of claim 8 wherein said rotating element is formed of ceramic.
10'. The improvement of claim 9 wherein said xed element is formed of stainless steel.
References Cited UNITED STATES PATENTS 2,822,126 2/1958 `Cohn 233-1 2,876,769 3/1959 Cordova 23-2585 3,145,713 8/1964 Latham 128-214 3,195,809 7/1965 Pickels et al. 233-21 3,231,184 1/1966 Podbielniak 233-21 X 3,292,937 12/1966 Nunley 277-59 3,443,747 5/1969 Jacobson et al. 233-22 DALTON L. TRULUCK, Primary Examiner U.S. Cl. X.R.
US727192A 1968-05-07 1968-05-07 Seal means for blood separator and the like Expired - Lifetime US3519201A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US72719268A 1968-05-07 1968-05-07

Publications (1)

Publication Number Publication Date
US3519201A true US3519201A (en) 1970-07-07

Family

ID=24921704

Family Applications (1)

Application Number Title Priority Date Filing Date
US727192A Expired - Lifetime US3519201A (en) 1968-05-07 1968-05-07 Seal means for blood separator and the like

Country Status (1)

Country Link
US (1) US3519201A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747843A (en) * 1971-04-09 1973-07-24 Damon Corp Continuous flow zonal rotor
US3904109A (en) * 1973-12-14 1975-09-09 Gene E Underwood Multiple density separator
FR2308380A1 (en) * 1975-04-25 1976-11-19 Us Energy PROCESS AND CONTROL SYSTEM FOR A CONTINUOUS FLOW CENTRIFUGE FOR THE SEPARATION OF BLOOD FRACTIONS
FR2350885A1 (en) * 1976-05-14 1977-12-09 Baxter Travenol Lab CENTRIFUGAL SEPARATOR OF THE DISPOSABLE TYPE TO FRACTION THE BLOOD
FR2392663A1 (en) * 1976-10-06 1978-12-29 Haemonetics Corp
FR2395785A1 (en) * 1977-06-27 1979-01-26 Ibm DEVICE FOR THE CONTINUOUS RECOVERY OF FRACTIONS OF A LIQUID MIXTURE SUBJECT TO CENTRIFUGATION
US4151844A (en) * 1977-11-11 1979-05-01 Baxter Travenol Laboratories, Inc. Method and apparatus for separating whole blood into its components and for automatically collecting one component
EP0026333A1 (en) * 1979-09-28 1981-04-08 Gambro Dialysatoren K.G. Transferring means for use in a device for separating of liquids, especially whole blood
US4446015A (en) * 1981-11-30 1984-05-01 E. I. Du Pont De Nemours And Company Field flow fractionation channel
US4446014A (en) * 1981-11-30 1984-05-01 Dilks Jr Charles H Sedimentation field flow fractionation channel and method
US4448679A (en) * 1981-11-30 1984-05-15 E. I. Du Pont De Nemours And Company Apparatus and method for sedimentation field flow fractionation
EP0125675A2 (en) * 1983-05-16 1984-11-21 E.I. Du Pont De Nemours And Company Rotating seal for continuous flow centrifuge
WO1987001307A1 (en) * 1985-09-10 1987-03-12 Vereniging Het Nederlands Kanker Instituut Method and device for the separation and isolation of blood or bone marrow components
WO1988005332A1 (en) * 1987-01-13 1988-07-28 Mclaughlin, William, F. Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US4767397A (en) * 1987-03-09 1988-08-30 Damon Corporation Apparatus for liquid separation
US4776964A (en) * 1984-08-24 1988-10-11 William F. McLaughlin Closed hemapheresis system and method
US4781215A (en) * 1983-08-09 1988-11-01 Mayhall Jr Riley H Package wrapping machine system
US4810240A (en) * 1986-11-05 1989-03-07 Frau S.P.A. Centrifugal separator of liquids with rotating seals on the fixed upper head
US4851126A (en) * 1987-11-25 1989-07-25 Baxter International Inc. Apparatus and methods for generating platelet concentrate
US4944883A (en) * 1987-01-13 1990-07-31 Schoendorfer Donald W Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US4965846A (en) * 1986-08-11 1990-10-23 Baxter International Inc. Pivot pin bearing/seal with loose eyelet especially suited for disposable continuous flow blood filtration system cartridges
US5053127A (en) * 1987-01-13 1991-10-01 William F. McLaughlin Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US5100372A (en) * 1990-03-02 1992-03-31 Haemonetics Corporation Core for blood processing apparatus
US5133729A (en) * 1990-08-17 1992-07-28 Smith & Nephew Dyonics Inc. Motor driven hand piece for a surgical tool
US5360542A (en) * 1991-12-23 1994-11-01 Baxter International Inc. Centrifuge with separable bowl and spool elements providing access to the separation chamber
US5362291A (en) * 1991-12-23 1994-11-08 Baxter International Inc. Centrifugal processing system with direct access drawer
US5370802A (en) * 1987-01-30 1994-12-06 Baxter International Inc. Enhanced yield platelet collection systems and methods
US5427695A (en) * 1993-07-26 1995-06-27 Baxter International Inc. Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate
US5549834A (en) * 1991-12-23 1996-08-27 Baxter International Inc. Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5573678A (en) * 1987-01-30 1996-11-12 Baxter International Inc. Blood processing systems and methods for collecting mono nuclear cells
US5628915A (en) * 1987-01-30 1997-05-13 Baxter International Inc. Enhanced yield blood processing systems and methods establishing controlled vortex flow conditions
US5632893A (en) * 1987-01-30 1997-05-27 Baxter Internatinoal Inc. Enhanced yield blood processing systems with angled interface control surface
US5641414A (en) * 1987-01-30 1997-06-24 Baxter International Inc. Blood processing systems and methods which restrict in flow of whole blood to increase platelet yields
US5690835A (en) * 1991-12-23 1997-11-25 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5961842A (en) * 1995-06-07 1999-10-05 Baxter International Inc. Systems and methods for collecting mononuclear cells employing control of packed red blood cell hematocrit
US5980760A (en) * 1997-07-01 1999-11-09 Baxter International Inc. System and methods for harvesting mononuclear cells by recirculation of packed red blood cells
US5993370A (en) * 1987-01-30 1999-11-30 Baxter International Inc. Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma
US6007725A (en) * 1991-12-23 1999-12-28 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US6027657A (en) * 1997-07-01 2000-02-22 Baxter International Inc. Systems and methods for collecting diluted mononuclear cells
US6315706B1 (en) * 1996-02-26 2001-11-13 Gambro, Inc. Method for separating cells, especially platelets, and bag assembly therefor
US6511411B1 (en) 1987-01-30 2003-01-28 Baxter International Inc. Compact enhanced yield blood processing systems
US6582349B1 (en) 1997-07-01 2003-06-24 Baxter International Inc. Blood processing system
US6656105B2 (en) 1999-05-31 2003-12-02 Gambro, Inc. Centrifuge for processing blood and blood components in ring-type blood processing bags
US6689042B2 (en) 1997-02-12 2004-02-10 Gambro, Inc. Centrifuge and container system for treatment of blood and blood components
US6736768B2 (en) 2000-11-02 2004-05-18 Gambro Inc Fluid separation devices, systems and/or methods using a fluid pressure driven and/or balanced approach
US6740239B2 (en) 1999-10-26 2004-05-25 Gambro, Inc. Method and apparatus for processing blood and blood components
US7279107B2 (en) 2002-04-16 2007-10-09 Gambro, Inc. Blood component processing system, apparatus, and method
WO2012137086A1 (en) * 2011-04-08 2012-10-11 Sorin Group Italia S.R.L. Disposable device for centrifugal blood separation
US9079194B2 (en) 2010-07-19 2015-07-14 Terumo Bct, Inc. Centrifuge for processing blood and blood components
US10039876B2 (en) 2014-04-30 2018-08-07 Sorin Group Italia S.R.L. System for removing undesirable elements from blood using a first wash step and a second wash step

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822126A (en) * 1952-04-12 1958-02-04 Protein Foundation Inc Continuous feed centrifuge
US2876769A (en) * 1955-10-11 1959-03-10 Cordova Jose Juan Apparatus for oxygenating, centrifuging and changing the temperature of blood
US3145713A (en) * 1963-09-12 1964-08-25 Protein Foundation Inc Method and apparatus for processing blood
US3195809A (en) * 1962-03-27 1965-07-20 Beckman Instruments Inc Continuous flow centrifuge having a rotary face seal
US3231184A (en) * 1963-01-07 1966-01-25 Dresser Ind Liquid contact process and apparatus
US3292937A (en) * 1964-04-03 1966-12-20 Clifford E Nunley Shaft seal for liquid centrifuges
US3443747A (en) * 1966-10-14 1969-05-13 Beckman Instruments Inc Fluid coupling for continuous flow centrifuge

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822126A (en) * 1952-04-12 1958-02-04 Protein Foundation Inc Continuous feed centrifuge
US2876769A (en) * 1955-10-11 1959-03-10 Cordova Jose Juan Apparatus for oxygenating, centrifuging and changing the temperature of blood
US3195809A (en) * 1962-03-27 1965-07-20 Beckman Instruments Inc Continuous flow centrifuge having a rotary face seal
US3231184A (en) * 1963-01-07 1966-01-25 Dresser Ind Liquid contact process and apparatus
US3145713A (en) * 1963-09-12 1964-08-25 Protein Foundation Inc Method and apparatus for processing blood
US3292937A (en) * 1964-04-03 1966-12-20 Clifford E Nunley Shaft seal for liquid centrifuges
US3443747A (en) * 1966-10-14 1969-05-13 Beckman Instruments Inc Fluid coupling for continuous flow centrifuge

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747843A (en) * 1971-04-09 1973-07-24 Damon Corp Continuous flow zonal rotor
US3904109A (en) * 1973-12-14 1975-09-09 Gene E Underwood Multiple density separator
FR2308380A1 (en) * 1975-04-25 1976-11-19 Us Energy PROCESS AND CONTROL SYSTEM FOR A CONTINUOUS FLOW CENTRIFUGE FOR THE SEPARATION OF BLOOD FRACTIONS
FR2350885A1 (en) * 1976-05-14 1977-12-09 Baxter Travenol Lab CENTRIFUGAL SEPARATOR OF THE DISPOSABLE TYPE TO FRACTION THE BLOOD
FR2392663A1 (en) * 1976-10-06 1978-12-29 Haemonetics Corp
FR2395785A1 (en) * 1977-06-27 1979-01-26 Ibm DEVICE FOR THE CONTINUOUS RECOVERY OF FRACTIONS OF A LIQUID MIXTURE SUBJECT TO CENTRIFUGATION
US4151844A (en) * 1977-11-11 1979-05-01 Baxter Travenol Laboratories, Inc. Method and apparatus for separating whole blood into its components and for automatically collecting one component
EP0026333A1 (en) * 1979-09-28 1981-04-08 Gambro Dialysatoren K.G. Transferring means for use in a device for separating of liquids, especially whole blood
US4350284A (en) * 1979-09-28 1982-09-21 Gambro Dialysatoren Kg Transferring means for use in a device for separating liquids
US4446015A (en) * 1981-11-30 1984-05-01 E. I. Du Pont De Nemours And Company Field flow fractionation channel
US4446014A (en) * 1981-11-30 1984-05-01 Dilks Jr Charles H Sedimentation field flow fractionation channel and method
US4448679A (en) * 1981-11-30 1984-05-15 E. I. Du Pont De Nemours And Company Apparatus and method for sedimentation field flow fractionation
EP0125675A2 (en) * 1983-05-16 1984-11-21 E.I. Du Pont De Nemours And Company Rotating seal for continuous flow centrifuge
EP0125675A3 (en) * 1983-05-16 1987-01-14 E.I. Du Pont De Nemours And Company Rotating seal for continuous flow centrifuge
US4781215A (en) * 1983-08-09 1988-11-01 Mayhall Jr Riley H Package wrapping machine system
US4776964A (en) * 1984-08-24 1988-10-11 William F. McLaughlin Closed hemapheresis system and method
US4911833A (en) * 1984-08-24 1990-03-27 William F. McLaughlin Closed hemapheresis system and method
WO1987001307A1 (en) * 1985-09-10 1987-03-12 Vereniging Het Nederlands Kanker Instituut Method and device for the separation and isolation of blood or bone marrow components
US4850952A (en) * 1985-09-10 1989-07-25 Figdor Carl G Method and device for the separation and isolation of blood or bone marrow components
US4965846A (en) * 1986-08-11 1990-10-23 Baxter International Inc. Pivot pin bearing/seal with loose eyelet especially suited for disposable continuous flow blood filtration system cartridges
US4810240A (en) * 1986-11-05 1989-03-07 Frau S.P.A. Centrifugal separator of liquids with rotating seals on the fixed upper head
WO1988005332A1 (en) * 1987-01-13 1988-07-28 Mclaughlin, William, F. Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
AU604843B2 (en) * 1987-01-13 1991-01-03 Mclaughlin, William F. Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US5053127A (en) * 1987-01-13 1991-10-01 William F. McLaughlin Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US4944883A (en) * 1987-01-13 1990-07-31 Schoendorfer Donald W Continuous centrifugation system and method for directly deriving intermediate density material from a suspension
US5628915A (en) * 1987-01-30 1997-05-13 Baxter International Inc. Enhanced yield blood processing systems and methods establishing controlled vortex flow conditions
US6511411B1 (en) 1987-01-30 2003-01-28 Baxter International Inc. Compact enhanced yield blood processing systems
US6899666B2 (en) 1987-01-30 2005-05-31 Baxter International Inc. Blood processing systems and methods
US20030102272A1 (en) * 1987-01-30 2003-06-05 Baxter International Inc. Blood processing systems and methods
US5993370A (en) * 1987-01-30 1999-11-30 Baxter International Inc. Enhanced yield collection systems and methods for obtaining concentrated platelets from platelet-rich plasma
US5807492A (en) * 1987-01-30 1998-09-15 Baxter International Inc. Blood processing systems and methods for collecting mono nuclear cell
US5370802A (en) * 1987-01-30 1994-12-06 Baxter International Inc. Enhanced yield platelet collection systems and methods
US5750039A (en) * 1987-01-30 1998-05-12 Baxter International Inc. Blood processing systems and methods for collecting mono nuclear cells
US5529691A (en) * 1987-01-30 1996-06-25 Baxter International Inc. Enhanced yield platelet collection systems and method
US5641414A (en) * 1987-01-30 1997-06-24 Baxter International Inc. Blood processing systems and methods which restrict in flow of whole blood to increase platelet yields
US5573678A (en) * 1987-01-30 1996-11-12 Baxter International Inc. Blood processing systems and methods for collecting mono nuclear cells
US5632893A (en) * 1987-01-30 1997-05-27 Baxter Internatinoal Inc. Enhanced yield blood processing systems with angled interface control surface
US4767397A (en) * 1987-03-09 1988-08-30 Damon Corporation Apparatus for liquid separation
US4851126A (en) * 1987-11-25 1989-07-25 Baxter International Inc. Apparatus and methods for generating platelet concentrate
US5100372A (en) * 1990-03-02 1992-03-31 Haemonetics Corporation Core for blood processing apparatus
US5133729A (en) * 1990-08-17 1992-07-28 Smith & Nephew Dyonics Inc. Motor driven hand piece for a surgical tool
US6071421A (en) * 1991-12-23 2000-06-06 Baxter International Inc. Systems and methods for obtaining a platelet suspension having a reduced number of leukocytes
US5549834A (en) * 1991-12-23 1996-08-27 Baxter International Inc. Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5690835A (en) * 1991-12-23 1997-11-25 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5804079A (en) * 1991-12-23 1998-09-08 Baxter International Inc. Systems and methods for reducing the number of leukocytes in cellular products like platelets harvested for therapeutic purposes
US5362291A (en) * 1991-12-23 1994-11-08 Baxter International Inc. Centrifugal processing system with direct access drawer
US5360542A (en) * 1991-12-23 1994-11-01 Baxter International Inc. Centrifuge with separable bowl and spool elements providing access to the separation chamber
US6007725A (en) * 1991-12-23 1999-12-28 Baxter International Inc. Systems and methods for on line collection of cellular blood components that assure donor comfort
US5427695A (en) * 1993-07-26 1995-06-27 Baxter International Inc. Systems and methods for on line collecting and resuspending cellular-rich blood products like platelet concentrate
US5961842A (en) * 1995-06-07 1999-10-05 Baxter International Inc. Systems and methods for collecting mononuclear cells employing control of packed red blood cell hematocrit
US6315706B1 (en) * 1996-02-26 2001-11-13 Gambro, Inc. Method for separating cells, especially platelets, and bag assembly therefor
US6855102B2 (en) 1996-02-26 2005-02-15 Gambro Inc Method for separating cells, especially platelets, and bag assembly therefor
US6689042B2 (en) 1997-02-12 2004-02-10 Gambro, Inc. Centrifuge and container system for treatment of blood and blood components
US20030211927A1 (en) * 1997-07-01 2003-11-13 Baxter International Inc. Blood processing chamber counter-balanced with blood-free liquid
US6582349B1 (en) 1997-07-01 2003-06-24 Baxter International Inc. Blood processing system
US6027657A (en) * 1997-07-01 2000-02-22 Baxter International Inc. Systems and methods for collecting diluted mononuclear cells
US5980760A (en) * 1997-07-01 1999-11-09 Baxter International Inc. System and methods for harvesting mononuclear cells by recirculation of packed red blood cells
US6656105B2 (en) 1999-05-31 2003-12-02 Gambro, Inc. Centrifuge for processing blood and blood components in ring-type blood processing bags
US7235041B2 (en) 1999-05-31 2007-06-26 Gambro Bct, Inc. Centrifuge for processing a blood product with a bag set having a processing bag
US20060270542A1 (en) * 1999-05-31 2006-11-30 Gambro, Inc. Centrifuge for Processing Blood and Blood Components
US7097774B2 (en) 1999-05-31 2006-08-29 Gambro Inc Method for processing a blood product with a bag set having a multi-way connector
US6740239B2 (en) 1999-10-26 2004-05-25 Gambro, Inc. Method and apparatus for processing blood and blood components
US7094197B2 (en) 2000-11-02 2006-08-22 Gambro, Inc. Method for fluid separation devices using a fluid pressure balanced configuration
US7094196B2 (en) 2000-11-02 2006-08-22 Gambro Inc. Fluid separation methods using a fluid pressure driven and/or balanced approach
US20040164032A1 (en) * 2000-11-02 2004-08-26 Gambro, Inc. Fluid Separation Methods Using a Fluid Pressure Driven and/or Balanced Approach
US6773389B2 (en) 2000-11-02 2004-08-10 Gambro Inc Fluid separation devices, systems and/or methods using a fluid pressure driven and/or balanced configuration
US6736768B2 (en) 2000-11-02 2004-05-18 Gambro Inc Fluid separation devices, systems and/or methods using a fluid pressure driven and/or balanced approach
US7279107B2 (en) 2002-04-16 2007-10-09 Gambro, Inc. Blood component processing system, apparatus, and method
US7497944B2 (en) 2002-04-16 2009-03-03 Caridianbct, Inc. Blood component processing system, apparatus, and method
US7708889B2 (en) 2002-04-16 2010-05-04 Caridianbct, Inc. Blood component processing system method
US9079194B2 (en) 2010-07-19 2015-07-14 Terumo Bct, Inc. Centrifuge for processing blood and blood components
WO2012137086A1 (en) * 2011-04-08 2012-10-11 Sorin Group Italia S.R.L. Disposable device for centrifugal blood separation
US9308314B2 (en) 2011-04-08 2016-04-12 Sorin Group Italia S.R.L. Disposable device for centrifugal blood separation
US10039876B2 (en) 2014-04-30 2018-08-07 Sorin Group Italia S.R.L. System for removing undesirable elements from blood using a first wash step and a second wash step
US10293098B2 (en) 2014-04-30 2019-05-21 Sorin Group Italia S.R.L. System for removing undesirable elements from blood using a first wash step and a second wash step

Similar Documents

Publication Publication Date Title
US3519201A (en) Seal means for blood separator and the like
US4094461A (en) Centrifuge collecting chamber
US3096283A (en) Container for blood and machine for separating precipitates from liquid blood constituents
US4007871A (en) Centrifuge fluid container
US4734089A (en) Centrifugal blood processing system
US4142670A (en) Chylomicron rotor
US4879031A (en) Blood centrifugation cell
EP0235244B1 (en) Method and device for separating serum/plasma from blood
US6629919B2 (en) Core for blood processing apparatus
EP0297216B1 (en) Centrifugation bowl for the continuous centrifugation of blood
US3955755A (en) Closed continuous-flow centrifuge rotor
SE8302215D0 (en) centrifugal
GB1381019A (en) Apparatus and method for the separation of blood
SE8502830D0 (en) centrifugal
ES8401326A1 (en) Method and chamber for separating granulocytes from whole blood.
SE7902761L (en) BLOOD PREPARATION SET AND DEVICE
US3843045A (en) Centrifuge rotor
JPS6112496B2 (en)
US4177921A (en) One piece chylomicron rotor liner
US3494545A (en) Sludge level indicating device for centrifugal separators
JPS596952A (en) Rotary seal structure for flowing sample into rotary container and discharging the same therefrom
US4372483A (en) Fluid containment annulus for fixed angle rotors
KR970004702B1 (en) Centrifugal separator
GB1328482A (en) Infant feeding unit assembly
SE8305674L (en) Centrifuge with a self-emptying centrifuge drum